The integral \(\mathop \smallint \limits_0^1 \mathop \smallint \l

The integral \(\mathop \smallint \limits_0^1 \mathop \smallint \l
| The integral \(\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^{{x^2}} \left( {{x^2} + {y^2}} \right)dx\;dy\) equals to

A. <span class="math-tex">\(\frac{{26}}{{105}}\)</span>

B. <span class="math-tex">\(\frac{4}{{105}}\)</span>

C. <span class="math-tex">\(\frac{{12}}{{105}}\)</span>

D. <span class="math-tex">\(\frac{{16}}{{105}}\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: A

SOLUTION

\(f\left( x \right) = \mathop \smallint \limits_0^1 \mathop \smallint \limits_0^{{x^2}} \left( {{x^2} + {y^2}} \right)dxdy\)

\(= \mathop \smallint \limits_0^1 \mathop \smallint \limits_0^{{x^2}} \left( {{x^2} + {y^2}} \right) \cdot dy \cdot dx\)

\(= \mathop \smallint \limits_0^1 \left[ {{x^2}y + \frac{{{y^3}}}{3}} \right]_0^{{x^2}}dx\)

\(= \mathop \smallint \limits_0^1 \left[ {{x^4} + \frac{{{x^6}}}{3}} \right]dx\)

\(= \left[ {\frac{{{x^5}}}{5} + \frac{{{x^7}}}{{7\; \times \;3}}} \right]_0^1\)

\(= \frac{1}{5} + \frac{1}{{21}} = \frac{{26}}{{105}}\)